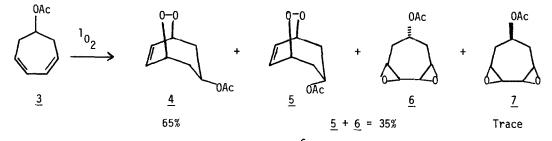
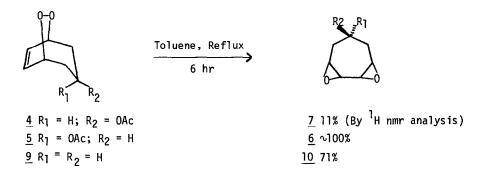

PHOTOOXIDATION OF 1-ACETOXY-3,5-CYCLOHEPTADIENE


David M. Floyd* and Christopher M. Cimarusti The Squibb Institute for Medical Research P.O. Box 4000, Princeton, New Jersey 08540

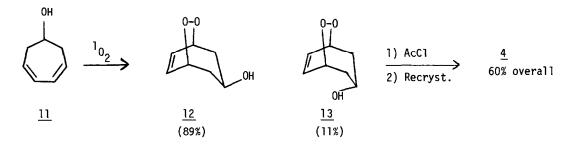
<u>Summary</u>: A method for the preparation of <u>cis</u> oxygenated cycloheptyl systems has been developed. Photooxidation of <u>3</u> gives mainly <u>4</u>, resulting from attack syn to the acetoxy substituent. The acetate function of both <u>4</u> and <u>5</u>, the minor anti-product, appears to affect the rate of endoperoxide to diepoxide rearrangement.

We have been concerned with developing methods for the facile preparation of <u>cis</u> oxygenated polyacetate units suitable for further elaboration. Unlike the analogous polypropionate systems, very little control of stereochemistry could be expected from acyclic precursors.¹ To our knowledge the only highly stereoselective method for <u>cis</u> 1,3-induction in unbranched systems is Bartlett's "phosphate extension".² Our inability to readily convert the epoxyphosphate <u>1</u> to the diepoxide <u>2</u>³ led us to consider alternative approaches.

We have examined the addition of photo-generated singlet oxygen to 3,5-cycloheptadienel-ol (<u>11</u>) and its derivatives.⁴ At this time, we wish to describe the photooxidation of the acetyl derivative $\underline{3}^5$ and the facile rearrangement of the minor endoperoxide product <u>5</u> to diepoxide <u>6</u> under both photolytic and thermal conditions.



The reaction of 3, under standard conditions⁶, was complete in 4.5 to 5 hours and afforded three major products. Analysis by ¹³C and ¹H nmr demonstrated that the mixture contained 65% of endoperoxide <u>4</u> (40% isolated by crystallization from ether)⁷ and 35% of <u>5</u> and <u>6</u> combined. The ratio of <u>5</u> to <u>6</u> varied, perhaps due to variations in the amount of hematoprophyrin hydrochloride (Hem·HCl) used in individual experiments⁸.


Structural assignments were initially made by ¹³C and ¹H nmr⁹ and, in the case of the endoperoxide isomers <u>4</u> and <u>5</u>, confirmed by single crystal X-ray analysis¹⁰ of 1-0-acetyl-1,3,6cycloheptatriol <u>8</u> obtained by hydrogenation of <u>4</u>. Confirmation of structure <u>6</u> was obtained by comparison of its ¹³C spectrum to that of the diepoxide <u>7</u> formed by thermolysis of <u>4</u> (160^oC, toluene, 3.25 hours; 50% as an oil from plc on silica). Structural and chemical studies on <u>5</u> were performed on a <u>ca</u>. 1:1 mixture of <u>4</u> and <u>5</u>, obtained after crystallization of <u>4</u> and column chromatography on silica of the mother liquor to remove <u>6</u>. All relevant ¹³C and ¹H nmr data are listed in the Table. The chemical shifts of H₁ and C₄ are consistent with literature assignments in related systems.⁹

We were initially surprised to observe significant amounts of a diepoxide arising under the reaction conditions¹¹, especially since both endoperoxides appeared to be stable for weeks at room temperature. The selectivity of the rearrangement was demonstrated by re-subjecting a 1:1 mixture of <u>4</u> and <u>5</u> to the reaction conditions⁶. After 10 hours a clean mixture of <u>4</u> and <u>6</u>, with only traces of <u>5</u> remaining, was isolated. Further study showed that the mixture of <u>4</u> and <u>5</u> was unchanged by stirring in methanol (with and without added Hem·HCl) at ambient temperature and that <u>5</u> was only slowly rearranged to <u>6</u> when subjected to the light source in the absence of Hem·HCl. However, photolysis in the presence of Hem·HCl under an argon atmosphere effected the rapid isomerization of <u>5</u> to <u>6</u>. If relatively large amounts of Hem·HCl are employed, <u>4</u> will also rearrange to the corresponding diepoxide <u>7</u>. In fact, ¹³C nmr analysis of crude <u>5</u> obtained from preparative reactions showed it to contain 3-4% of <u>7</u>.

Similar results were obtained under thermal conditions. Heating endoperoxide $\underline{4}$ in toluene at reflux took approximately 96 hours to effect complete conversion of $\underline{7}$ and some minor products. Under identical conditions, $\underline{5}$ completely rearranged to diepoxide $\underline{6}$ in less than 5 hours. As a point of reference, the thermal rearrangement of 2-cycloheptene-1,4-endoperoxide¹² ($\underline{9}$) to diepoxide $\underline{10}$ was examined. Comparing the extent of reaction of $\underline{4}$, $\underline{5}$ and $\underline{9}$ in refluxing toluene for 6 hours showed conversions to the corresponding diepoxides $\underline{7}$, $\underline{6}$ and $\underline{10}$ to be 11%, $\sim 100\%$ and 71% respectively. Thus, it appears that while the anti-acetate group of $\underline{5}$ is definitely facilitating the rearrangement of $\underline{5}$ to $\underline{6}$, the syn-acetate of $\underline{4}$ is retarding the rearrangement of $\underline{4}$ to $\underline{7}$. At this time, it is not possible to differentiate between the interaction of the pendant acetoxy function with some diradical intermediate⁸, 13</sup> and the effects on the conformation of the cycloheptene ring that the acetoxy substituent imparts.

In terms of our synthetic goal, we have observed a highly stereoselective singlet oxygen addition to the parent alcohol <u>11</u>. Thus standard conditions gave an 80% yield of an 89:11 mixture of the desired exo-isomer <u>12</u> to the endo-isomer <u>13</u> after column chromatography on silica. Only trace amounts of bis-epoxide products were observed by ¹³C and ¹H nmr analysis of the crude reaction mixture. Formation of the acetoxy derivatives (AcCl, pyr., CH_2Cl_2 , $0^{\circ}C$) and recrystallization from ether afforded pure <u>4</u> in 60% overall yield from <u>11</u>.

The results of chemical transformation of $\underline{4}$ and its analogs as well as further work on the substituent effects on the endoperoxide to diepoxide rearrangement will be reported in due course.

		NMR Data	in CDC13	(ppm)	0Ac
					\mathbf{k}
				I	
Assignment	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
C-1	67.9	68.8	67.8	67.7	69.5
C-2	36.9	38.4	32.4	31.3	44.8
C-3	72.9	74.4	51.3	51.5	68.8
C-4	128.5	130.4	52.9	52.7	31.8
H-1	ca. 4.95δ	5.43ô			
	(quintet)	(quintet)		

References

- (a) P.A. Bartlett, and J. Myerson, J. Am. Chem. Soc., <u>100</u>, 3950 (1978) and references.
 (b) E.J. Corey, and T. Case, Tetrahedron Letters, 335 (1979).
- 2) P.A. Bartlett, and K.K. Jernstedt, J. Am. Chem. Soc., 99, 4829 (1977).
- 3) <u>1</u> was homogeneous by 13 C nmr; upon reaction with I2 in CH₃CN a complex mixture was obtained in very low yield.
- 4) Singlet oxygen additions to these systems are unreported. (a) K. Gollnick, and G.O. Schenek in <u>1,4-Cycloaddition Reactions</u>, Ch. 10, pp 255 (1968) Academic Press New York. (b) Y. Ito, M. Oda, and Y. Kitahara, Tetrahedron Letters, 239 (1975). Diels-Alder additions are known; (c) O.L. Chapman, D.J. Pasto, and A.A. Griswold, J. Am. Chem. Soc., <u>84</u>, 1213 (1962); (d) M.J. Bishop, and I. Fleming, J. Chem. Soc. (C); 2524 (1970); (e) A.F. Cameron, and G. Ferguson, J. Chem. Soc. (B), 943 (1970).

- 5) (a) Y. Kashman, and O. Awerbouch, Tetrahedron, <u>26</u>, 4213 (1970). (b) D.I. Sehuster, J.M. Palmer, and S.C. Dickerman, J. Org. Chem., <u>31</u> 4281 (1966). (c) P. Radlick, J. Org. Chem., <u>29</u>, 960 (1964).
- 6) Preparative reactions were conducted by irradiation in methanol (1g/50 ml) with a 650W tungsten-halogen lamp (water cooled immersion well) under a stream of oxygen using Hem·HCl as the sensitizer.
- 7) All crystalline compounds gave satisfactory C and H analyses. The uncorrected melting points of these compounds are as follows: <u>4</u>, 93.5-95°C (ether); <u>6</u>, 81-82°C (ether-hexane); <u>8</u>, 126-127°C (ethyl acetate); <u>9</u>, 110-115°C (ether); and <u>10</u>, 44-45.5°C (ether).
- Photochemical rearrangements of endoperoxides to diepoxides are accelerated by triplet sensitizers, K.K. Macheshwari, P. DeMayo, and D. Wiegand, Can. J. Chem., 48, 3265 (1970).
- 9) See Ref. 1 d.e. For related systems see Y. Hawakawa, Y. Baba, S. Makino, and R. Noyori, J. Am. Chem. Soc., <u>100</u>, 1786 (1978); A.P. Cowling and J. Mann, J. Chem. Soc., Perkin I, 1564 (1978).
- 10) We thank Dr. J. Z. Gougoutas and Ms. B. Toeplitz for performing this analysis.
- 11) Usually much more vigorous conditions are associated with this rearrangement. See Refs. 4a and 8.
- 12) A.C. Cope, T.A. Liss, and G.W. Wood, J. Am. Chem. Soc., 79, 6287 (1957).
- W. Herz, R.C. Ligon, J.A. Turner, and J.F. Blount, J. Org. Chem., <u>42</u> 1885 (1977) and references.

(Received in USA 20 June 1979)